Lãnh đạo và chuyển đổi số
    Facebook Twitter Instagram
    Trending
    • Satya Nadella đưa Microsoft trở lại vị thế dẫn đầu từ bờ vực của sự không phù hợp
    • Agile không dành cho mọi tổ chức
    • ChatGPT và AI Tạo sinh là gì?
    • Biết “công việc phải hoàn thành” từ khách hàng của bạn
    • Học tập trong thế kỷ 21
    • 9 mệnh lệnh để trở thành doanh nghiệp thích ứng với tương lai
    • Chuyển đổi số từ phương diện đo lường hiệu quả
    • Khám phá vũ trụ bằng tư duy nền tảng
    Facebook Twitter Instagram
    Lãnh đạo và chuyển đổi sốLãnh đạo và chuyển đổi số
    • Home
      • Về chúng tôi
    • Tri thức mới
      • Đổi mới sáng tạo
      • Quản trị tri thức
      • Công cụ quản trị 4.0
      • Tủ sách CEO
      • Đổi mới giáo dục
    • Chuyển đổi số
      • Tăng trưởng trong thời đại số
      • Smart Manufacturing
      • Smarthome
    • Công nghệ 4.0
      • Big Data
      • Blockchain
    • Phát triển lãnh đạo
      • Năng lực lãnh đạo số
      • Top MBA
      • ThS MPPM
    • Case study
    • Bài mới nhất
    Lãnh đạo và chuyển đổi số
    Home » Tin tức chuyển đổi số » Cuộc chiến giành giật nhân tài AI
    Big Data

    Cuộc chiến giành giật nhân tài AI

    TS Phạm Anh TuấnBy TS Phạm Anh TuấnDecember 20, 2019Updated:December 20, 2019No Comments9 Mins Read
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Share
    Facebook Twitter LinkedIn Pinterest Email

    Một khi AI trở thành yếu tố then chốt cho mọi tổ chức muốn hưởng lợi từ việc phân tích các tệp dữ liệu lớn, các tổ chức sẽ phải tham gia vào một cuộc chiến khô máu để giành giật những nhà khoa học dữ liệu được đào tạo bài bản. Hậu quả là ngày nay có sự thiếu hụt trầm trọng ở cấp độ toàn cầu về nhân tài AI. Các nhân tài AI hiện tại đang tập trung hết thảy vào một vài ông lớn công nghệ như Google, Facebook, Amazon và Microsoft. Theo một vài ước lượng, chỉ riêng Facebook và Google đã tuyển khoảng 80% tiến sĩ học máy từ thị trường lao động về làm cho họ.

    Không phải ai làm về dữ liệu cũng là kỹ sư AI

    Trong khi nhiều cá nhân ở các công ty đang đảm nhiệm những công việc với tên gọi gắn với khoa học dữ liệu, đa số không thành thạo về học máy và trí tuệ nhân tạo. Các doanh nghiệp vẫn xem các nhà khoa học dữ liệu là các chuyên gia phân tích thực thi công việc tình báo kinh doanh sử dụng bảng điều khiển, hoặc lạc quan nhất là các chuyên gia thống kê với nhiệm vụ tạo mẫu từ các tệp dữ liệu để rút ra các kết luận ở dạng tĩnh. Đa số các tổ chức mới chỉ bắt đầu cuộc cách mạng của họ hướng tới AI và vẫn chưa sở hữu một dàn các chuyên gia AI thực sự giỏi.

    Kể từ năm 2000, số lượng các startup AI đã tăng 14 lần, còn vốn đầu tư mạo hiểm đổ vào những startup này đã tăng sáu lần trong cùng thời điểm. Tỷ lệ các công việc đòi hỏi kỹ năng AI tăng khoảng 4,5 lần kể từ năm 2013.34 Nhu cầu toàn cầu ban đầu về các nhà khoa học dữ liệu và các nhà quản trị thành thạo về phân tích đã thu hút sự chú ý của các chính trị gia, chính phủ, tập đoàn và các trường đại học trên toàn thế giới.

    Đại học là nơi tạo nguồn cung AI đầu tiên

    Tất nhiên, nguồn cung các nhà khoa học dữ liệu phải bắt đầu từ các chương trình đào tạo ở bậc đại học. Sự tăng trưởng về số lượng việc làm thu nhập cao trong mảng khoa học dữ liệu đã làm tăng lượng đăng ký theo học các chương trình khoa học dữ liệu: những sinh viên tốt nghiệp có bằng về khoa học dữ liệu và phân tích đã tăng 7,5 phần trăm từ năm 2010 đến năm 2015, vượt lên trên mọi loại bằng khác với mức độ tảng chỉ là 2,4 phần trăm xét về tổng thể. Hiện nay, hơn 120 chương trình thạc sĩ và 100 chương trình phân tích kinh doanh đang được cung cấp chỉ riêng ở Mỹ. Do nhu cầu đào tạo đội ngũ nhân viên hiện tại rất lớn, người ta thấy sự gia tăng rõ rệt về mức độ phổ biến và sẵn có của các trại huấn luyện, các khóa học trực tuyến dạng MOOC và những chương trình cấp chứng chỉ về khoa học dữ liệu.

    Xem thêm :
    Chuyển đổi công nghệ trong ngành bán lẻ (phần 2)

    Năm 2018, LinkedIn thông báo số vị trí việc làm gắn với nhà khoa học dữ liệu ở Mỹ đã tăng 500 phần trăm từ năm 2014 trong khi số vị trí việc làm gắn với kỹ sư học máy tăng tới 1200 phần trăm. Một nghiên cứu khác năm 2017 đưa ra dự báo rằng vào năm 2020 tổng số việc làm về phân tích và khoa học dữ liệu sẽ đạt con số 2,720,000 và sẽ tác động tới hàng loạt ngành công nghiệp khác nhau. Trên các trang web hay nền tảng tuyển dụng như Glassdoor và LinkedIn, các vị trí kỹ sư học máy, nhà khoa học dữ liệu và lập trình viên dữ liệu lớn luôn nổi bật nhất với nhu cầu tuyển dụng đến từ khắp các ngành công nghiệp.

    Nhu cầu kỹ năng AI đang tăng mạnh

    Chính vì vậy, các công ty đang chi trả hậu hĩnh để thu hút các nhà khoa học dữ liệu. Năm 2014, Google mua lại startup trí tuệ nhân tạo DeepMind Technologies với chỉ 75 nhân viên, trong thương vụ trị giá khoảng 500 triệu đô la Mỹ, nói cách khác mỗi nhân viên trị giá hơn 6 triệu đô la Mỹ.39 Vụ thâu tóm này tạo ra ít nhất là hai kết quả quan trọng: phát triển AlphaGo, hay chương trình AI đầu tiên đánh bại người chơi chuyên nghiệp của trò chơi Go, một trò chơi lâu đời xuất xứ từ Trung Quốc, một khoảnh khắc thực sự “Sputnik” đối với Trung Quốc, khiến chính phủ nước này xem AI như một ưu tiên phát triển chiến lược.40 Gần đây hơn thuật toán AlphaFold của DeepMind chiến thắng cuộc thi CASP, được xem như “Olympics cuốn pretein ảo, với mục tiêu là dự đoán cơ cấu ba chiều của protein dựa trên dữ liệu chuỗi gien.” Đây là một lĩnh vực quan trọng trong nghiên cứu sinh học phân tử với tiềm năng mạnh mẽ trong việc nâng cao hiểu biết về dịch bệnh và khám phá các loại thuốc mới.

    Xem thêm :
    Bên trong chương trình Chuyển đổi số tại IKEA

    Hành động của các chính phủ để tăng nhân lực AI

    Để giải quyết nhu cầu tổng thể về các kỹ năng khoa học dữ liệu, các chính phủ bắt đầu hành động. Viện Dữ liệu Mở của Anh và Viện Alan Turing, chiến lược dữ liệu 2014 của Ủy ban Châu Âu và Kế hoạch chiến lược phát triển và nghiên cứu Dữ liệu lớn 2016 của chính phủ liên bang Mỹ là những minh chứng về các nỗ lực phối hợp để giải quyết nhu cầu cung cấp các nhà khoa học dữ liệu đào tạo bài bản. Trung Quốc, quốc gia đã biến AI thành một trụ cột chính trong Kế hoạch 5 năm lần thứ mười ba và Kế hoạch phát triển Thế hệ AI mới, đang đầu tư không tiếc tiền vào nghiên cứu AI, bao gồm cả các chương trình đào tạo đại học để cho ra lò các nhà khoa học dữ liệu.42 Tuy nhiên Trung Quốc cũng dự trù họ sẽ đối mặt với sự thiếu hụt trầm trọng về các nhà khoa học dữ liệu: năm 2016, bộ công nghệ thông tin ước lượng Trung quốc sẽ cần thêm 5 triệu nhân sự AI để đáp ứng đủ nhu cầu.

    Trên bình diện toàn cầu, các chương trình nghiên cứu truyền thống đang đóng góp vào nghiên cứu lõi và các công trình nghiên cứu đang được công bố với tốc độ cực nhanh. Các viện nghiên cứu hàng đầu như MIT, Carnegie Mellon, Stanford và USC ở Mỹ; Đại học công nghệ Nanyang, Đại học Quốc gia Singapore, Đại học Bách khoa Hồng Công, Đại học Trung quốc ở Hồng Công, Viện Tự động hóa; Đại học Tsinghua, và Viện Khoa học Trung quốc ở Châu Á; Đại học Grenada và Đại học Kỹ thuật Mu ních ở Châu Âu; cùng những đại học khác ở Canada, Thụy sĩ, Ý, Hà lan, Áo và Bỉ, v.v.  

    Các chương trình khoa học dữ liệu ở Mỹ đang được mở rộng ra rất nhiều hướng. Năm 2014, Đại học California ở Berkeley tung ra một chương trình thạc sĩ trực tuyến về khoa học dữ liệu và hiện nay cung cấp một chương trình đào tạo điều hành về khoa học dữ liệu và phân tích. Hơn 30 trường trung học ở California đã bắt đầu cung cấp các lớp học khoa học dữ liệu dành cho học sinh cấp hai và cấp ba. Về lâu dài, môn toán và khoa học máy tính cần được đặc biệt chú trọng đưa vào chương trình đào tạo, bắt đầu từ chương trình phổ thông để giải quyết những thiếu hụt kỹ năng AI.

    Xem thêm :
    Tư duy lại về khách hàng

    Số lượng các khóa huấn luyện “boot camp” và chương trình đào tạo nhằm thu hút các nhà khoa học dữ liệu cung ngày một gia tăng. Những chương trình này thu hút các nhà thực hành với nền tảng kỹ thuật mạnh mẽ khác nhau như toán học, vật lý hay các ngành kỹ thuật khác, để huấn luyện và chuẩn bị hành trang cho họ bước vào sự nghiệp AI. Một vài khóa huấn luyện thậm chí được cung cấp trực tuyến, ví dụ Coursera cung cấp chương trình đào tạo trực tuyến cho cả nội dung học máy và học sâu. Các khóa học khác diễn ra trên lớp như chương trình Insight Data Science tại khu vực Vịnh San Francisco.

    Nhu cầu về những người dịch thuật cho AI

    Ngoài các nhà khoa học dữ liệu, các công ty cũng sẽ cần các cá nhân mà McKinsey gọi là “người dịch thuật.” Những người dịch thuật này giúp hàn gắn sự chia cách giữa các nhà thực hành AI và doanh nghiệp. Họ có đủ kiến thức về quản trị để hướng dẫn và khai thác các tài năng AI một cách hiệu quả, và cũng nắm khá rõ về AI để đảm bảo thuật toán được tích hợp đúng cách vào các thực tiễn kinh doanh.

    Không nghi ngờ gì, chúng ta đang bước vào một thời điểm chuyển dịch khi mà các tổ chức đào tạo lại lực lượng lao động, tuyển những sinh viên tốt nghiệp có bằng AI, và thực hiện điều chỉnh theo hàng loạt thay đổi được thúc đẩy bởi những sáng tạo và ứng dụng AI. Tuy nhiên có một lộ trình sáng tỏ phía trước cho các tổ chức nhìn ra được một tương lai phụ thuộc vào AI tất yếu và hiểu được yêu cầu phải bắt tay xây dựng các năng lực AI ngay từ hôm nay. Ngày nay, các tổ chức có thể dựa vào chuyên môn của các nhà tư vấn AI và các đối tác công nghệ tin cậy trong khi đồng thời xây dựng năng lực AI nội bộ cho chính họ.

    Nguồn: Digital Transformation: survive and thrive in an Era of Mass Extinction. Thomas Siebel (2017)

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleTrải nghiệm khách hàng: làm thế nào cân đong các điểm chạm?
    Next Article Cách mà Amazon đã đặt ra tiêu chuẩn về trải nghiệm khách hàng cho toàn ngành thương mại điện tử
    TS Phạm Anh Tuấn
    • Website

    Phó VT Viện sáng tạo & Chuyển đổi số VIDTI

    Related Posts

    Satya Nadella đưa Microsoft trở lại vị thế dẫn đầu từ bờ vực của sự không phù hợp

    March 25, 2023 Chuyển đổi số
    phương thức agile không dành cho mọi tổ chức

    Agile không dành cho mọi tổ chức

    February 27, 2023 Chuyển đổi số
    ChatGPT là gì

    ChatGPT và AI Tạo sinh là gì?

    February 4, 2023 Big Data

    Biết “công việc phải hoàn thành” từ khách hàng của bạn

    February 1, 2023 Chuyển đổi số
    9 mệnh lệnh cho tổ chức thích ứng tương lai

    9 mệnh lệnh để trở thành doanh nghiệp thích ứng với tương lai

    January 4, 2023 Chuyển đổi số

    Chuyển đổi số từ phương diện đo lường hiệu quả

    December 13, 2022 Chuyển đổi số
    Add A Comment

    Leave A Reply Cancel Reply

    Chuyển đổi số VN
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    Bài mới
    Chuyển đổi số

    Satya Nadella đưa Microsoft trở lại vị thế dẫn đầu từ bờ vực của sự không phù hợp

    By Quynh HuongMarch 25, 20230

    Satya Nadella, giám đốc điều hành của Microsoft Corp., đã giành được một vị trí độc nhất trong số các ông trùm công nghệ, những người chủ trì bối cảnh kỹ thuật số ngày nay.

    Sự giàu có và quyền lực ngày càng tăng của Big Tech trong thập kỷ qua là một đặc điểm nổi bật của chủ nghĩa tư bản hiện đại. Tuy nhiên, ngay cả khi được đánh giá theo tiêu chuẩn của hầu hết các đồng nghiệp của mình, Nadella vẫn nổi bật.

    phương thức agile không dành cho mọi tổ chức

    Agile không dành cho mọi tổ chức

    February 27, 2023
    ChatGPT là gì

    ChatGPT và AI Tạo sinh là gì?

    February 4, 2023

    Biết “công việc phải hoàn thành” từ khách hàng của bạn

    February 1, 2023
    học tập trong thế kỷ 21

    Học tập trong thế kỷ 21

    January 14, 2023
    RSS Smart Business Blog
    • Thị trường xa xỉ của Trung Quốc tỏa sáng bất chấp mối quan tâm của người tiêu dùng toàn cầu
    • Asda bác bỏ cáo buộc rằng máy ảnh tự kiểm tra của họ vi phạm GDPR
    • Nhiều khách sạn ở TP.Hồ Chí Minh đóng cửa, chuyển sang bán rượu
    • Phân tích thu nhập quý 4 và cả năm của HUYA 2022: Doanh thu quý 4 phù hợp, đạt được hiệu suất người dùng ổn định đồng thời thúc đẩy hiệu quả hoạt động
    • Sự thức tỉnh tâm linh Gen Z của Trung Quốc? Thanh niên Trung Quốc lũ lượt đi chùa
    RSS Smart Industry VN
    • Zebra giới thiệu giải pháp tự động hóa lấy con người làm trung tâm của Công nghiệp 5.0 tại IntraLogisteX 2023
    • Tìm nguồn cung ứng chiến lược có thể giúp SMB như thế nào
    • Balboa Capital cung cấp một cái nhìn tổng quan về ngành công nghiệp robot của Hoa Kỳ
    • McKinsey & Exiger về cuộc cách mạng công nghệ chuỗi cung ứng
    • Chiến lược tối ưu hóa chuỗi cung ứng với tự động hóa
    • Swisslog để cài đặt giải pháp AutoStore tại cơ sở của Cardinal Health
    • Khai thác những cơ hội mới trong khoa học đời sống
    • IoT có làm cho việc chăm sóc sức khỏe trở nên hợp lý hơn không?
    • Tự động hóa có thể giúp các nhà phân phối bao bì củng cố lợi nhuận như thế nào
    • Geekplus chọn Boomi để hợp lý hóa việc tích hợp dữ liệu Logistics, ứng dụng
    RSS ASEAN tech news
    • How Mimecast thinks differently about email security
    • Inside AIA’s cloud adoption journey
    • How industry cloud platforms are shaping the future of business applications
    • SolarWinds doubles down on APAC business
    • Emerging markets lead growth in cloud spend in Asia
    Thống kê
    • 0
    • 1
    • 202,878
    Facebook Twitter Instagram Pinterest Vimeo YouTube
    • Home
      • Về chúng tôi
    • Tri thức mới
      • Đổi mới sáng tạo
      • Quản trị tri thức
      • Công cụ quản trị 4.0
      • Tủ sách CEO
      • Đổi mới giáo dục
    • Chuyển đổi số
      • Tăng trưởng trong thời đại số
      • Smart Manufacturing
      • Smarthome
    • Công nghệ 4.0
      • Big Data
      • Blockchain
    • Phát triển lãnh đạo
      • Năng lực lãnh đạo số
      • Top MBA
      • ThS MPPM
    • Case study
    • Bài mới nhất
    © 2023 Trithucquantri.

    Type above and press Enter to search. Press Esc to cancel.